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1 Introduction

A now seminal work in 3D Reconstruction,
Neural Radiance Fields (NeRFs)[1] are the
current state-of-the-art approach to the prob-
lem of inverse computer graphics; that is, re-
constructing complex 3D scenes given only 2D
images of said scene and their known camera
poses. To do so, they use the volumetric ren-
dering equation[2], which reasons about trans-
mittance (the probability that a ray of light
travels from point A to point B) in a scene.
The effect is that solid object surfaces have
very high opacity values (and low transmit-
tance) while points in empty space have little
to no opacity (and thus have very high trans-
mittance).

In this work, I am interested in analyzing
the original NeRF paper, which uses an 8-layer
MLP to encode geometric information about
the scene (in this case, color and volume den-
sity). The MLP utilizes the ReLU activation
function in between each layer but interest-
ingly, it initializes the linear layers using the
standard normal distribution. This initializa-
tion scheme does not take into account the
gain of the ReLU activation function, which
has the effect of causing the MLP to output
values on a distribution with 0 mean and 0
variance at initialization[3]. This is bad prac-
tice according to conventional deep learning
practices as it is has been established through
decades of work that ensuring well-shaped dis-
tributions of both the activation values and
their gradients (i.e., 0 mean and unit variance)
is critical to convergence[4][5].

In line with this wisdom, I find that the
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Figure 1: A discretized view of volume render-
ing. Top: a ray is cut into intervals, each with a
density σi ≥ 0 and interval length di. Bottom:
illustration of the weight given to 3rd interval.

MLP easily converges to local minima in the
optimization landscape, which leads to worse
rendering quality and poor performance at in-
ference time. In fact, the only reason why
NeRF is able to converge at all with this poor
initialization scheme is due to the superpow-
ers of the Adam optimizer[6]; I tried 8 exper-
iments training NeRF with SGDM[7] and ob-
served complete failures on all 8 trials.

This work seeks to address this obvious de-
ficiency of NeRF by using batch normalization
[8] to assist with stabilizing training and ensur-
ing that the model is able to reliably converge
across all test runs. I try three different vari-
ants of the batch norm module, two of which
relies on a priori knowledge distilled from the
volume rendering equation itself. I find that
the batch norm modules have varying degrees
of success at inference time, although all mod-
ules demonstrate reliable convergence across
multiple experiments.
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2 Method

Volume Rendering NeRF optimizes a
neural mapping from a spatial location z
to color and volumetric density fσ. There
are many choices for this mapping, includ-
ing MLPs[9][10], voxel grids[11][12][13], and
hybrid hashgrid-MLP encodings [14], but
the core idea of volumetric rendering re-
mains a constant in all NeRF architec-
tures. Auxiliary inputs are also sent as en-
coded features into this mapping, such as
viewing direction[1], time[15], scene-specific
embeddings[16], geometric priors[17], diffusion
model priors[18][19], and more.
To render an image, we integrate (c, σ) over

points on each ray z(t) = o+ td by∫ ∞

0

w(t)·c(t) dt =
∫ ∞

0

σ(t)T (t)︸ ︷︷ ︸
=∂t(1−T (t))

·c(t) dt, (1)

where the transmittance T (t) is the probabil-
ity that light traverses the interval [0, t] with-
out dying off.
In practice, the ray is discretized into seg-

ments, each with length di. Assuming con-
stant volume density and color within the seg-
ment, volume rendering takes on the form of
alpha compositing, where the “over” opera-
tion [20] is applied in a back-to-front order.
See Fig. 1 for a tree-branching analogy.

αi = 1− e−σidi with wi =
∏
j<i

(1− αj) · αi.

(2)

The final color is produced by the expectation
w.r.t. the probability mass function

∑
i wi ci.

Now, using (2) and simple algebra, we can
solve for σ:

σ(α, d) = −1

d
log(1− α). (3)

Note that for solid surfaces, α, which measures
opacity, approaches 1 while for empty scenes,
α approaches 0. Using this insight and some
example interval lengths d, which is on the nu-
merical range of [0.001, 0.3] for the scenes we

d = 0.005 d = 0.010 d = 0.015

α = 0.01 2.0 1.0 0.7
α = 0.50 138.6 69.3 46.2
α = 0.75 277.3 138.6 92.4
α = 0.99 921.0 460.5 307.0

Table 1: Example desired σ values for vari-
ous alpha values and interval lengths using σ =
−1

d log(1 − α). As the desired alpha value in-
creases, the required value for σ across all interval
lengths sharply increases.

consider, we compute the corresponding σ val-
ues in Tab. 1. We observe that for high α val-
ues (which represent object surfaces), NeRF
must learn very large σ values that approach
the numerical range of hundreds or even thou-
sands. This is a huge challenge for an MLP
that A) is poorly initialized and B) does not
normalize the activation values between layers
as the model needs to learn huge values which
can easily cause training instability. I refer the
reader to several Github issues where other
members of the community have run into sim-
ilar training instability issues.12

Batch Norm to the Rescue To rectify
this, we propose to use batch normalization
as a regularizer on the learnable weight matri-
ces in each layer of the MLP. As a recap, batch
norm normalizes an input distribution to have
mean 0 and unit variance. It then applies an
affine transformation f(x) = γ · x + β, where
γ and β are both learnable parameters. How-
ever, at initialization, f is simply the identity
transform as γ and β are initialized to be 1V
and 0V respectively.
In my experiments, I try adding three vari-

ants of batch normalization to the NeRF
model. First is the original batch norm imple-
mentation (which we denote as standard BN ).
The second and third variants employ Tab. 1
as a heuristic and apply a log-linear scaling
on γ for successive layers. As we know that

1https://github.com/yenchenlin/nerf-pytorch/issues/38
2https://github.com/yenchenlin/nerf-pytorch/issues/82
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Figure 2: Average convergence curves for the 4
NeRF models on all 8 blender scenes. All 3 batch
norm modules beat the default NeRF baseline but
standard BN provides the best convergence.

σ needs to be very large for points on object
surfaces, we can guide the model to more eas-
ily predict these large values by encouraging
the distribution of the MLP’s output to have
mean 0 with a very large variance. The idea
is that centering the distribution around 0 en-
sures that the vast majority of spatial loca-
tions z are mapped to σ = 0 (and thus have
a corresponding local alpha value of 0) which
is correct as a vast majority of the scene is
empty. The large variance however ensures
that a small number of those spatial locations
(particularly those on solid object surfaces)
get mapped to extremely large σ values, re-
sulting in high local alpha values and thus cor-
rectly capturing scene geometry.

To accomplish this, I change the γ values
directly. For the second batch norm variant,
which I denote as naive BN, I set γi = 2i

for i = {0, 1, ..., 6, 7}. γ1 remains unchanged,
while γ8 is initialized to be 128V . In the third
variant, denoted as improved BN, I apply a less
aggressive initialization scheme and set γi = 2i

for i = {−2,−1, ..., 4, 5} such that γ1 = 0.25V
while γ8 = 32V . Note that the activation func-
tion for all layers is ReLU, which results in an
exponential distribution as all negative values
are clipped to 0 in the forward pass.

3 Experiments

I train the four variants of NeRF under consid-
eration (no BN, standard BN, naive BN, im-
proved BN) on all 8 scenes from the Blender
synthetic dataset for a total of 32 experiments.
In line with previous work, we adopt the con-
ventional recipe of Linear → BN → ReLU[21].
Note that these experiments are trained on
nerf-pytorch[22], a PyTorch implementation
that has been numerically tested and matches
the original Tensorflow implementation.
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Figure 3: Average condition numbers for the
weight matrices of each layer of each of the 4
NeRF MLPs across the 8 scenes from the blender
dataset.

As the output of the volume rendering pro-
cess is a rendered image, the loss function
is simply the mean-squared error (MSE) be-
tween the pixels of the rendered image and
the pixels of the ground truth image for some
given camera pose. The MSE loss can be con-
verted to a metric called Peak Signal-to-Noise
Ratio (PSNR), which compares how ‘similar’
two images are to each other. PSNR is mea-
sured in log space and higher values corre-
sponds to more accurate renderings.

I provide PSNR results of all 32 NeRF ex-
periments on the evaluation set for the given
scene, as well as analyze intermediate activa-
tion distributions, output σ distributions, and
provide spectral analyses of the weight matri-
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chair drums ficus hotdog lego materials mic ship avg

no BN (default) 14.04 22.91 28.91 35.06 30.98 8.74 13.04 27.28 22.61
expected performance 32.00 24.01 29.13 35.18 31.54 28.62 31.91 27.65 30.13

standard BN 25.22 21.15 24.59 29.76 24.97 20.62 25.73 21.35 24.17
naive BN 23.70 22.19 14.23 24.56 27.08 23.53 13.04 24.51 21.61
improved BN 29.54 22.40 26.56 31.21 27.62 24.53 29.26 25.01 27.02

Table 2: Evaluation PSNR ↑ values of NeRF on all 8 scenes from the blender synthetic dataset[1].
‘Expected’ lists the performance we expect from the default model but the optimization can fail randomly
(as marked with red) or converge to a suboptimal location in the parameter space (as marked with orange).
Note that a 1 or 2 point drop in PSNR rendering quality is significant as PSNR is calculated in log space.

ces to determine if our proposed method does
indeed assist with reliable convergence.

General Results Tab. 2 shows the ad-
vantage of our improved BN module over
the other models. The default model should
match the values of the expected performance,
but as discussed earlier, suffers from instabil-
ity during training causing the optimization
to fail randomly. Batch norm, in the three
forms we analyze here, ensures consistent ren-
dering quality but only the improved BN mod-
ule is able to approach the expected perfor-
mance baseline.
In Fig. 2, we show that the standard BN

and improved BN networks have the best con-
vergence curves across all 8 scenes. It is inter-
esting to consider that the standard BN model
has such good convergence but does poorly at
inference time, as demonstrated in Tab. 2;
this is a classic case of overfitting and we sus-
pect that BN’s inductive bias of normalizing
all activation distributions to match a stan-
dard Gaussian prevents NeRF from effectively
learning large σ values for spatial locations un-
seen during training. The naive BN module
suffers from poor convergence as the initializa-
tion scheme on γ is too aggressive, while the
default model suffers from instability during
training.
I also analyze the SVD of each of the lay-

ers in the MLP. Fig. 3 shows the condition
numbers (the ratio of the largest singular value
to the smallest one) which is a good statisti-
cal measure for the amount of instability in
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Figure 4: Intermediate distributions for each layer
in the MLP for all 4 NeRF models. The solid
line represents the mean, while the shaded region
represents the standard deviation. Here we only
plot µ+ σ (and not µ− σ) for ease of visibility.

the network. If the condition number ω is
close to 1, then the model will be robust to
changes in the input, but as ω gets larger, the
model will become less and less robust to small
changes in the input, demonstrating instabil-
ity. We find that, interestingly, using batch
normalization does not assist in regularizing
the weight matrices of the linear layers as the
figure shows that all the layers across all the
different types of MLPs have very large condi-
tion numbers. Instead, we will see that batch
norm only smooths the distribution of activa-
tion values between each layer, as opposed to
‘smoothing’ out the layers themselves.
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Figure 5: The CDF of the output σ distributions
for the 4 NeRF modules on the hotdog scene. Be-
cause this is an approximation of the true CDF
(i.e., I compute a histogram with 1000 bins), there
are angular ‘bumps’ in this plot.

Hotdog Analysis We now take a deeper
look at the hotdog scene, where the default
model was able to converge very well.

In Fig. 4, we see that the naive BN and im-
proved modules follow the expected pattern -
there is a smooth upwards exponential tran-
sition of the distribution, which reflects the
initialized γ values in the BN modules. The
standard BN module is a flat line because all
intermediate distributions are normalized to
mean 0 and variance 1. The default model is
very interesting as the distributions from the
first 7 layers are “well-behaved”; it is only at
the 8th layer that we observe a huge shift in
the distribution, which reflects the necessity of
the model to learn large σ values for spatial lo-
cations along solid object surfaces. However,
this giant shift in the distribution is very bad
(an example of a very large internal covari-
ate shift), and a very good indicator of why
the default NeRF MLP is so unstable during
training.

In Fig. 5, we query a uniformly dense grid
of 2003 points for their σ values and visu-
alize their Cumulative Distribution Function
(CDF). There is a straight line from σ = 100

to the left because the vast majority of spatial

locations in the scene are empty and have an
associated σ = 0. While all 4 NeRF mod-
els are able to learn large σ values on the
numerical range of hundreds and even thou-
sands, the naive BN module learns σ values
greater than 10000, which is too extreme. This
is directly caused by the very aggressive ini-
tialization scheme, and the result is that the
model converges poorly. Our less aggressive
improved BN module learns σ values which
are capped at 1000, which is in line with our
a priori reasoning.

4 Conclusion

NeRF is a state-of-the-art approach to the
problem of inverse computer graphics. How-
ever, the original architecture is prone to poor
convergence, due in large part to the require-
ment of the model to learn very large σ val-
ues and to the poor initialization scheme of
the MLP layers. We propose three variants
of batch norm, all of which improve stability
during training (none suffer from random fail-
ure modes). However, we observe that using a
priori knowledge about the volume rendering
equation can guide our initialization scheme of
the batch norm modules themselves, which we
observe helps boost performance.
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